
 
 
 
We’ll assume that the reader is familiar with the concepts of sets, and maps 
between sets. Some special sets that we’ll see a lot are: 
 

• The set of natural numbers: ℕ = {1, 2, 3, …} 
• The set of integers: ℤ = {…, -3, -2, -1, 0, 1, 2, 3, …} 
• The set of rational numbers: ℚ ≈ {𝑎𝑎

𝑏𝑏
∶ 𝑎𝑎, 𝑏𝑏 𝜖𝜖 ℤ, 𝑏𝑏 ≠ 0} (Note that the set ℚ is 

really a set of equivalence classes, so for example, 1
2

, 2
4

, 3
6
, etc. all represent 

the same element of ℚ.) 
• The set of real numbers: ℝ 
• The set of complex numbers: ℂ = {𝑎𝑎 + 𝑏𝑏𝑏𝑏 ∶ 𝑎𝑎, 𝑏𝑏 𝜖𝜖 ℝ, 𝑏𝑏2 = −1} 

 
Note that ℕ ⊂ ℤ ⊂ ℚ ⊂ ℝ ⊂ ℂ.  
 
An operator on any given set (A) is a function A×A → A. Examples of operators are 
addition + and multiplication * on the number sets mentioned previously. 
 
A set A along with an operator * on A is a monoid if it has the following properties: 
 

1. Associativity: For all a, b, c ∈ A, a*(b*c) = (a*b)*c  
2. Identity: There is some element (e ∈ A) such that for all a ∈ A, a*e = e*a = 

a 
 
The element e is unique, since if we have e1 and e2 satisfying the identity property, 
then e1 = e1*e2 = e2 by that same identity property, and so they turn out to be the 
same element. The set ℕ with the usual multiplication operator forms a monoid, 
with 1 playing the role of e. 
 
A monoid is a group if it has an additional property: 
 

3. Inverses: For every a ∈ A, there is an a’ ∈ A such that a * a’ = a’ * a = e 
 
Inverses are unique, since if we have a1’ and a2’ as inverses for a, then a1’ = a1’ * e 
= a1’ *(a * a2’) = (a1’ * a) * a2’ = e * a2’ = a2’, and they turn out to be the same 
element. Note that e is its own inverse, and depending on the group, there might 
be other elements that are their own inverse. These are called involutions. 
 
The set ℤ with the usual addition operator forms a group with 0 playing the role of 
e. For an integer n, its inverse is -n, since n + -n = -n + n = 0.  



 
 
 
A group is said to be Abelian if it also has the following property: 
 

4. Commutativity: For every a, b ∈ A, a * b = b * a 
 
In particular, ℤ with the usual addition operator is an Abelian group. 
 
A set A with two operators, + and *, is a ring if it has the following properties: 
 

1. (A, +) is an Abelian group. The identity element of this group is denoted as 
0. 

2. (A, *) is a monoid. The identity element of this monoid is denoted as 1. 
3. The operator * distributes over +, that is, for every a, b, c ∈ A: a*(b + c) = 

a*b + a*c and (a + b)*c = a*c + b*c 
 
The set ℤ with the usual addition and multiplication is a ring. A ring is said to be 
commutative if it also has the following property: 
 

4. For every a, b ∈ A, a*b = b*a 
 
So ℤ is a commutative ring. 
 
If (A, +, *) is a commutative ring, and (A\{0}, *) is an Abelian group, then A is 
called a field. The sets ℚ, ℝ, and ℂ with the usual addition and multiplication are all 
fields, but ℤ is not because there are no multiplicative inverses in ℤ. 
 
A field (F, +, ×), an Abelian group (V, +), and an operator *:F×V→V are called a 
vector space if they satisfy the following properties: 
 

1. For all v ∈ V, 1*v = v 
2. For all a, b ∈ F, and all v ∈ V, (a +b) * v = a*v + b*v 
3. For all a, b ∈ F, and all v ∈ V, (a ×b) * v = a *(b* v) 
4.  For all a ∈ F, and all u, v ∈ V, a* (u + v) = a*u + a*v 

 
The elements of F are called scalars, and the elements of V are called vectors. Note 
that we can use + to denote addition in both F and V without ambiguity because we 
can never add vectors and scalars. The identity element of V is denoted as 0, which 
is called the zero vector. We say that V is a vector space over F. 
 



 
 
From the properties above, it follows that for a ∈ F and v ∈ V, a*v = 0 if and only if 
a = 0 or v = 0: 
 
If a=0, then a*v = 0*v = 0*v + 0 = 0*v + (0*v + -(0*v)) = (0*v + 0*v) + -(0*v) 
= (0 + 0)*v + -(0*v) = 0*v + -(0*v) = 0, so 0*v = 0 for all v ∈ V. 
 
Similarly, if v = 0, then a*v = a*0 = a*0 + 0 = a*0 + (a*0 + -(a*0)) = (a*0 + 
a*0) + -(a*0) = a*(0 + 0) + -(a*0) = a*0 + -(a*0) = 0, so a*0 = 0 for all a ∈ F. 
 
Finally, if a*v = 0 and a≠0, then let a’ be the multiplicative inverse of a in F, and v 
= 1*v = (a’ × a)*v = a’ * (a * v) = a’ * 0 = 0 since a *0 = 0 for all a ∈ F as 
previously shown. So, if a*v = 0 then either a=0 or v=0. 
 
If V is a vector space over ℝ, an operator ∙:V ×V→ℝ is an inner product on V if it 
has the following properties: 
 

1. Positive Definiteness: v∙v ≥ 0 for all v ∈ V and v∙v = 0 if and only if v=0 
2. Symmetry: u∙v = v∙u for all u, v ∈ V 
3. Linearity: (a* (u+v))∙w = a ×(u∙w + v∙w) for all a ∈ F and all u, v, w ∈ V 

 
For d ∈ ℕ, Let ℝ𝑑𝑑 = {(x1, x2, …, xd) : x1, x2, …, xd ∈ ℝ}, so 0 = (0, 0, …, 0) ∈ ℝ𝑑𝑑. 
 
For u, v ∈ ℝ𝑑𝑑, u = (u1, u2, …, ud), v = (v1, v2, …, vd), define: 
 

u+v = (u1+v1, u2+v2, …, ud +vd) 
 
and for a ∈ ℝ, u ∈ ℝ𝑑𝑑 define: 
 

a*u = a*(u1, u2, …, ud) = (a×u1, a×u2, …, a×ud) 
 
Then ℝ𝑑𝑑 is a vector space over ℝ. 
 
Define the operator ∙:ℝ𝑑𝑑 × ℝ𝑑𝑑 → ℝ as u∙v = u1×v1 + u2×v2 + … + ud×vd. This is an 
inner product on ℝ𝑑𝑑, also called the dot product. 
 
Most machine learning discussions involve vector spaces ℝ𝑑𝑑 over ℝ as defined here. 
 
For a vector space V over a field F, a set of non-zero vectors {v1, v2, …, vn} ⊂ V is 
said to be linearly independent if for arbitrary a1, a2, …, an ∈ F:  
 



 
 
 a1*v1 + a2*v2 + … + an*vn = 0 if and only if a1 = a2 = … = an = 0 
 
The dimension of a vector space is the size of the largest linearly independent set of 
vectors that can be found in it. For example, the dimension of ℝ𝑑𝑑 is d. 
 
If we can find n linearly independent vectors in V for every n ∈ ℕ, then V is said to 
be of infinite dimension or infinite-dimensional. Examples of infinite-dimensional 
vector spaces crop up in machine learning with support vector machines. 
 
If V is a vector space of dimension d over a field F and {v1, v2, …, vd } ⊂ V is linearly 
independent, we call that set a basis for V, and the vectors in the set are called 
basis vectors. Any u ∈ V can be written as a linear combination of basis vectors, 
which means we can find a1, a2, …, ad ∈ F such that: 
 

u = a1 *v1 + a2 *v2 + … + ad *vd 

 
A basis is not unique. Any set of d linearly independent vectors will do. For 
example, in ℝ𝑑𝑑, we normally use the following set as a basis: 
 

{e1 = (1, 0, 0, …, 0), e2 = (0, 1, 0, …, 0), e3 = (0, 0, 1, …, 0), …, ed = (0, 0, 
0, …, 1)} 

 
We denote this as the standard basis of ℝ𝑑𝑑. It then becomes clear that every vector 
v = (v1, v2, …, vd) in ℝ𝑑𝑑can be written in the following way: 
 

v = v1*e1 +v2*e2 + … +vd*ed 
 
A real-valued matrix is an array of real numbers, arranged in rows and columns. An 
n×m matrix A has n rows and m columns, and it is written as: 
 

𝐴𝐴 = �

𝑎𝑎11 𝑎𝑎12 ⋯ 𝑎𝑎1𝑚𝑚
𝑎𝑎21 𝑎𝑎22 … 𝑎𝑎2𝑚𝑚
⋮
𝑎𝑎𝑛𝑛1

⋮
𝑎𝑎𝑛𝑛2

⋱
…

⋮
𝑎𝑎𝑛𝑛𝑚𝑚

�  

 
Where each 𝑎𝑎𝑖𝑖𝑖𝑖 ∈ ℝ. We denote the set of all real-valued n×m matrices as ℝ𝑛𝑛×𝑚𝑚  
We can add two n×m matrices by adding them component-wise. So, if  
 



 
 

𝐴𝐴 = �

𝑎𝑎11 𝑎𝑎12 ⋯ 𝑎𝑎1𝑚𝑚
𝑎𝑎21 𝑎𝑎22 … 𝑎𝑎2𝑚𝑚
⋮
𝑎𝑎𝑛𝑛1

⋮
𝑎𝑎𝑛𝑛2

⋱
…

⋮
𝑎𝑎𝑛𝑛𝑚𝑚

�  

 
and 
 

𝐵𝐵 = �

𝑏𝑏11 𝑏𝑏12 ⋯ 𝑏𝑏1𝑚𝑚
𝑏𝑏21 𝑏𝑏22 … 𝑏𝑏2𝑚𝑚
⋮
𝑏𝑏𝑛𝑛1

⋮
𝑏𝑏𝑛𝑛2

⋱
…

⋮
𝑏𝑏𝑛𝑛𝑚𝑚

�  

 
then, 

𝐴𝐴 + 𝐵𝐵 = �

𝑎𝑎11 + 𝑏𝑏11 𝑎𝑎12 + 𝑏𝑏12 … 𝑎𝑎1𝑚𝑚 + 𝑏𝑏1𝑚𝑚
𝑎𝑎21 + 𝑏𝑏21

⋮
𝑎𝑎𝑛𝑛1 + 𝑏𝑏𝑛𝑛1

𝑎𝑎22 + 𝑏𝑏22
⋮

𝑎𝑎𝑛𝑛2 + 𝑏𝑏𝑛𝑛2

…
⋱
…

𝑎𝑎2𝑚𝑚 + 𝑏𝑏2𝑚𝑚
⋮

𝑎𝑎𝑛𝑛𝑚𝑚 + 𝑏𝑏𝑛𝑛𝑚𝑚

� 

 
Note that ℝ𝑛𝑛×𝑚𝑚 with this addition operator forms an Abelian group, with the identity 
element being the matrix Oϵ ℝ𝑛𝑛×𝑚𝑚 – the matrix where all entries are zero. In fact, 
ℝ𝑛𝑛×𝑚𝑚 is an (n×m)-dimensional vector space over ℝ, and for x ∈ ℝ and A ∈ ℝ𝑛𝑛×𝑚𝑚 , we 
define: 
 

𝑥𝑥 ∗ 𝐴𝐴 = �

𝑥𝑥 × 𝑎𝑎11 𝑥𝑥 × 𝑎𝑎12 ⋯ 𝑥𝑥 × 𝑎𝑎1𝑚𝑚
𝑥𝑥 × 𝑎𝑎21 𝑥𝑥 × 𝑎𝑎22 … 𝑥𝑥 × 𝑎𝑎2𝑚𝑚

⋮
𝑥𝑥 × 𝑎𝑎𝑛𝑛1

⋮
𝑥𝑥 × 𝑎𝑎𝑛𝑛2

⋱
…

⋮
𝑥𝑥 × 𝑎𝑎𝑛𝑛𝑚𝑚

� 

 
Note that an n×m matrix A has n rows, each of which can be viewed as a vector in 
ℝ𝑚𝑚. These are the row vectors of A. The matrix also has m columns, each of which 
can be viewed as a vector in ℝ𝑛𝑛. These are called the column vectors of A.  
 
Since the row vectors of an n×m matrix A are in ℝ𝑚𝑚, we can define an operator 
ℝ𝑛𝑛×𝑚𝑚 ×ℝ𝑚𝑚 → ℝ𝑛𝑛 as follows: for A ∈ ℝ𝑛𝑛×𝑚𝑚 let (a1, a2, …, an) denote the row vectors of 
A. Then for any c define: 
 

Ax = (a1∙x, a2∙x, …, an∙x) 
 
a∙x then denotes the dot product in ℝ𝑚𝑚  
 



 
 
Similarly, since the column vectors in A are in ℝ𝑛𝑛, we can define an operator 
ℝ𝑛𝑛 × ℝ𝑛𝑛×𝑚𝑚 → ℝ𝑚𝑚 as follows: for A ∈ ℝ𝑛𝑛×𝑚𝑚 let (a1, a2, …, am) denote the column 
vectors of A. Then for any x ∈ ℝ𝑛𝑛 define: 
 

xA = (x∙ a1, x∙a2, …, x∙am) 
 
x∙a then denotes the dot product in ℝ𝑛𝑛  
 
This can be extended to define an operator ℝ𝑛𝑛×𝑑𝑑 × ℝ𝑑𝑑×𝑚𝑚 → ℝ𝑛𝑛×𝑚𝑚 as follows: for A ∈ 
ℝ𝑛𝑛×𝑑𝑑, let (a1, a2, …, an) denote the row vectors of A. Note that these are vectors in 
ℝ𝑑𝑑. For B ∈ ℝ𝑑𝑑×𝑚𝑚, let (b1, b2, …, bm) denote the column vectors of B. Note that these 
are also vectors in ℝ𝑑𝑑. So, we can use the dot product in ℝ𝑑𝑑to define: 
 

𝐴𝐴𝐵𝐵 = �

a1 ∙ b1 a1 ∙ b2 … a1 ∙ b𝑚𝑚
a2 ∙ b1
⋮

a𝑛𝑛 ∙ b1

a2 ∙ b2
⋮

a𝑛𝑛 ∙ b2

…
⋱
…

a2 ∙ b𝑚𝑚
⋮

a𝑛𝑛 ∙ b𝑚𝑚

� 

 
In the special case where n = d = m, this defines a multiplication operator on ℝ𝑛𝑛×𝑛𝑛, 
and in fact ℝ𝑛𝑛×𝑛𝑛 with this multiplication operator is a monoid, with the identity 
element being the matrix: 
 

I =�
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

� 

 
In this matrix, diagonal entries are 1 and all other entries are zero. Combining this 
with the matrix addition operator defined previously, ℝ𝑛𝑛×𝑛𝑛 is a ring. Note that in 
general, AB ≠ BA, so this is an example of a non-commutative ring. 
 
The transpose of an n×m matrix A, written as AT, is the m×n matrix whose row 
vectors are the column vectors of A, and whose column vectors are the row vectors 
of A. So,  
  

If A is the matrix: 
 

𝐴𝐴 = �

𝑎𝑎11 𝑎𝑎12 ⋯ 𝑎𝑎1𝑚𝑚
𝑎𝑎21 𝑎𝑎22 … 𝑎𝑎2𝑚𝑚
⋮
𝑎𝑎𝑛𝑛1

⋮
𝑎𝑎𝑛𝑛2

⋱
…

⋮
𝑎𝑎𝑛𝑛𝑚𝑚

�, 

 
 then its transpose is: 



 
 
 

𝐴𝐴𝑇𝑇 = �

𝑎𝑎11 𝑎𝑎21 ⋯ 𝑎𝑎𝑛𝑛1
𝑎𝑎12 𝑎𝑎22 … 𝑎𝑎𝑛𝑛2
⋮

𝑎𝑎1𝑚𝑚
⋮

𝑎𝑎2𝑚𝑚
⋱
…

⋮
𝑎𝑎𝑛𝑛𝑚𝑚

�  

 
Furthermore, ATA will be an m×m matrix, and AAT will be an n×n matrix. A matrix 
A ∈ ℝ𝑛𝑛×𝑛𝑛 is symmetric if A=AT, which means that its column vectors and row vectors 
are the same. 
 
If A, B ∈ ℝ𝑛𝑛×𝑛𝑛, then: 
 

• (AT)T = A 
• (A + B)T = AT+BT 
• (AB)T = BTAT 

 
Previously, we defined an operator ℝ𝑛𝑛×𝑚𝑚 × ℝ𝑚𝑚 → ℝ𝑛𝑛 given by Ax = (a1∙x, a2∙x, …, 
an∙x) where the ai are the row vectors of A ∈ ℝ𝑛𝑛×𝑚𝑚 and x ∈ ℝ𝑚𝑚. This means that if we 
are given a specific A ∈ ℝ𝑛𝑛×𝑚𝑚 , then A can be viewed as a map A: ℝ𝑚𝑚 → ℝ𝑛𝑛 so that for 
x ∈ ℝ𝑚𝑚, A(x) = Ax. 
 
Let F be a field, and let U, V be vector spaces over F. A function L:U→V is a linear 
map, also called a linear transformation, if for all x, y ∈ U and all a, b ∈ F : 
 

L(a*x + b*y) = a*L(x) + b*L(y) 
 
Let 0U denote the zero vector in U and 0V denote the zero vector in V. Then: 

 
L(0U) = L(0*0U) = 0*L(0U) =0V 

 
This is true since L(0U) ∈ V by definition of L, and 0*v = 0V for all v ∈ V as shown 
previously. 
 
If A ∈ ℝ𝑛𝑛×𝑚𝑚 , then the map A: ℝ𝑚𝑚 → ℝ𝑛𝑛 discussed previously is a linear map. 
Conversely, given a linear map L: ℝ𝑚𝑚 → ℝ𝑛𝑛, there will a matrix A ∈ ℝ𝑛𝑛×𝑚𝑚 such that 
L(x) = Ax. The proof of this is a bit lengthy, but if you want to try to prove this 
yourself, look at how L acts on the standard basis of ℝ𝑚𝑚, and show that the ith 
component of L(ej) is the element aij of the matrix A you’re looking for.  
 



 
 
This means that there is a one-to-one correspondence between the matrices in 
ℝ𝑛𝑛×𝑚𝑚 and the set of linear maps from ℝ𝑚𝑚 to ℝ𝑛𝑛. In the special case where n=m, the 
matrices in ℝ𝑛𝑛×𝑛𝑛 correspond one-to-one with the linear maps from ℝ𝑛𝑛 to itself.  
 
To compose linear maps on ℝ𝑛𝑛, we simply multiply the corresponding matrices: if 
L1: ℝ𝑛𝑛 → ℝ𝑛𝑛 with L1(x) = Ax, and L2: ℝ𝑛𝑛 → ℝ𝑛𝑛 with L2(x) = Bx, then L1(L2(x)) = 
L1(Bx) = A(Bx)=(AB)x. 
 
Some of these maps will have an inverse, which means we are able to find an L-

1: ℝ𝑛𝑛 → ℝ𝑛𝑛 such that L-1(L(x)) = L(L-1(x)) = x. Also, the identity matrix I satisfies 
Ix=x, so if A is the matrix corresponding to L, and A’ is the matrix corresponding to 
L-1, then AA’ = A’A = I. We call A’ the inverse of A and write it as A-1. We say that A 
is invertible if A-1 exists. The set of all invertible matrices in ℝ𝑛𝑛×𝑛𝑛  form a group 
under matrix multiplication with the identity element of the group being the matrix 
I. Note that this group is not Abelian, since in general AB≠BA even when the 
matrices are invertible. 
 
For A ∈ ℝ𝑛𝑛×𝑛𝑛 , define the trace of A, written trA, as: 
 

trA = a11 + a22 + … + ann 

 
The trace of a square matrix is the sum of its diagonal elements. The trace has the 
following properties for A, B ∈ ℝ𝑛𝑛×𝑛𝑛 : 
 

• trA = trAT 
• tr (A+B) = trA + trB 
• trAB = trBA 

 
More generally, for A1, A2, …, Ak-1, Ak ∈ ℝ𝑛𝑛×𝑛𝑛 : 
 

• trA1A2…Ak-1Ak = trAkA1A2…Ak-1 = trA2…Ak-1Ak A1 
 
Many other properties can be derived from these, for example: 
 

• trAB = tr(AB)T = trBTAT = trATBT 
• trB-1AB = trB-1(AB) = tr(AB)B-1 = trA(B B-1) = trAI = trA 

 
And so on. Traces are also important within vector calculus. 
 



 
 
Consider the standard basis (e1, e2, …, en) in ℝ𝑛𝑛. Viewed geometrically, these span 
a unit n-cube, so for n=2, (e1, e2) span a unit square; for n=3, (e1, e2, e3) span a 
unit cube, etc.  
 
For A ∈ ℝ𝑛𝑛×𝑛𝑛 , let (a1, a2, …, an) denote the column vectors of A, so Aek = ak for 1≤k 
≤n. That means A maps the unit n-cube to some parallelotope spanned by (a1, a2, 
…, an). Thus, for n=2, (a1, a2) span a parallelogram, for n=3, (a1, a2, a3) span a 
parallelepiped, etc.  
 
The determinant of A, written detA or |A|, is the signed volume of the parallelotope 
spanned by the column vectors of A. If |A|>0, then A preserves the orientation of 
vectors, and if |A|<0, then A reverses the orientation of vectors. 
 
If |A| = 0, then the region has no n-dimensional volume, and so the region has 
fewer than n dimensions. This means that the linear transformation cannot be 
inverted, and so A-1 does not exist, i.e., A is not an invertible matrix. In this case, 
we say that A is singular. If A is invertible, it is non-singular. 
 
Determinants have the following properties. For A, B ∈ ℝ𝑛𝑛×𝑛𝑛 : 
 

• A is non-singular if and only if |A|≠0 
• |I| = 1 (since it spans a unit n-cube) 
• If any row or column vector of A is the zero vector, then |A|=0 
• If the row vectors of A are not linearly independent, then |A|=0 
• If the column vectors of A are not linearly independent, then |A|=0 
• |A| = |AT| 
• |AB| =|A| |B| 
• If |A|≠0, then |A-1| = |A|-1 

 
Given A ∈ ℝ𝑛𝑛×𝑛𝑛 , define Mij  ∈ ℝ(𝑛𝑛−1)×(𝑛𝑛−1) to be the matrix obtained by removing the ith 
row vector and jth column vector from A. The determinants |Mij| are called the 
minors of A. Let Cij = (-1)i+j |Mij|; these are called the cofactors of A. We use these 
to compute |A|: 
 

• If A ∈ ℝ1×1 , then A =[a11] and |A| = a11 ∈ ℝ 
• Otherwise, pick any row vector ai = (ai1, ai2, …, ain) in A, and compute: 

 

|𝐴𝐴|  = �𝑎𝑎𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

C𝑖𝑖𝑖𝑖 



 
 

 
To compute each cofactor Cij, we must compute the determinant |Mij|, which we do 
recursively. Note that each Mij is of a lower dimension than the previous one, so 
we’ll eventually hit the A ∈ ℝ1×1 case. 
*1. What have you accomplished since your last status update?* 
 
*2. What are you working on today?* 
 
*3. Are there any obstacles impeding your progress?* 
 
*4. What's something you're grateful for today?* 
Once we’ve computed |A|, and we find that |A|≠0, we can use it to compute A-1.  
Given A ∈ ℝ𝑛𝑛×𝑛𝑛 , define: 
 

𝐶𝐶 = �

C11 C12 ⋯ C1𝑛𝑛
C21 C22 … C2𝑛𝑛
⋮

C𝑛𝑛1
⋮

C𝑛𝑛2
⋱
…

⋮
C𝑛𝑛𝑛𝑛

�, 

 
Where the Cij are the cofactors of A as previously defined, then: 
 

𝐴𝐴−1 =
1

|𝐴𝐴|
𝐶𝐶𝑇𝑇 

 
There are more efficient ways to compute determinants and inverses. For any 
application where computing determinants or inverses of matrices is required, it is 
easiest to use existing “off-the-shelf” linear algebra packages rather than writing 
code from scratch. 
  



 
 
How to Build a Supervised Learning Algorithm 
 
We discussed different types of learning algorithms in a previous article. With a 
supervised learning algorithm, the example data set provides an input and output 
value for each data point: 
 

D = {(x1, y1), (x2, y2), …, (xN, yN)} 
 
In the hypothesis set (H) for this learning problem, we’ll use linear models. We will 
pick w = (w0, w1, …, wd) and define: 
 

hw(x) = w0 + w1x1 + w2x2 + … + wdxd 
 
This is a linear combination of the data points (xi) that comprise x, hence the name 
linear models. Our set H is the set of all such functions. By convention, we’ll write 
each x = (x1, x2, …, xd) as (1, x1, x2, …, xd), in other words, we’ll insert an x0 = 1 in 
the first component. This allows us to write hw as an inner product: 
 

hw(x) = w ∙ x 
 
We also need a way to measure how accurate hw is. Since we have a yn for each 
xn, one way to measure our accuracy is to compute the difference between hw(xn) 
and yn for each point within our known data set. We call this an error function 
because it measures the error in hw on D. We can denote this function as Ew and 
define the function as: 

 
𝐸𝐸w = ∑ (w ∙ x𝑛𝑛–𝑦𝑦𝑛𝑛)𝑁𝑁

𝑛𝑛−1   
 
However, it’s more convenient to define Ew in terms of hw as follows:  

 
𝐸𝐸w =  1

2
∑ (w ∙ x𝑛𝑛–𝑦𝑦𝑛𝑛)2𝑁𝑁
𝑛𝑛−1  =  1

2
∑ (ℎw(x𝑛𝑛) –𝑦𝑦𝑛𝑛)2𝑁𝑁
𝑛𝑛−1  

 
This will help simplify later calculations. 
 
Now that we’ve defined our hypothesis set H, the task of our learning algorithm will 
be to find an hw that minimizes the value of Ew. Note that Ew is a function of several 
variables, and from how we’ve defined it, it’s differentiable everywhere. This allows 
us to find a minimum value for it by computing its gradient, ∇𝐸𝐸w, and solving ∇𝐸𝐸w =
0. 

https://stratusinnovations.com/blog/machine-learning-paradigms-supervised-unsupervised/


 
 
 
We can do this analytically using some linear algebra. Define an N×(d+1) matrix 
with X to be the matrix whose rows are the x values from our data set, so: 
 

𝑋𝑋 = �
x1
x2…
x𝑁𝑁
� 

 
Where each xn is (1 xn,1 xn,2 … xn,d), then for w = (w0, w1 ,…, wd), 
 

𝑋𝑋w = �
w∙x1
w∙x2…
w∙x𝑁𝑁

� = �
hw(x1)
hw(x2)

…
hw(x𝑁𝑁)

� 

 
if we also write our output values as y = (y1, y2, …, yN), then: 
 

𝑋𝑋w − y = �
hw(x1) − 𝑦𝑦1
hw(x2) − 𝑦𝑦2…
hw(x𝑁𝑁) − 𝑦𝑦𝑁𝑁

� 

 
Note that this is a vector, and we can take the inner product of this vector with 
itself: 
 

(𝑋𝑋w − y) ∙ (𝑋𝑋w − y) =  �(ℎw(x𝑛𝑛) – 𝑦𝑦𝑛𝑛)2
𝑁𝑁

𝑛𝑛−1

 

 
And we almost have our error function from before – we just need to divide by 2: 
 

𝐸𝐸w =
1
2

(𝑋𝑋w − y) ∙ (𝑋𝑋w − y) =
1
2
�(ℎw(x𝑛𝑛) – 𝑦𝑦𝑛𝑛)2
𝑁𝑁

𝑛𝑛−1

 

 
We’ll omit the lengthy and tedious calculation of ∇𝐸𝐸w, and go straight to the punch 
line: 
 

∇𝐸𝐸w = 𝑋𝑋𝑇𝑇𝑋𝑋w − 𝑋𝑋𝑇𝑇y 
 
Setting this to zero, we solve for w: 
 

𝑋𝑋𝑇𝑇𝑋𝑋w = 𝑋𝑋𝑇𝑇y 
 
And we find that: 



 
 
 

w = (𝑋𝑋𝑇𝑇𝑋𝑋)−1𝑋𝑋𝑇𝑇y 
 
As long as the matrix 𝑋𝑋𝑇𝑇𝑋𝑋 has a non-zero determinant, we will have an exact value 
for w, and our final hypothesis will be the function g(x) = w∙x with w computed as 
above. Note that g is entirely dependent on the data in our training set. Also, 
computing w could be an issue if we have a very large training set.  
 
 


	How to Build a Supervised Learning Algorithm

